B⁰/B⁺ Meson Lifetimes using Semileptonic Decays in CDF Run II Satoru Uozumi University of Tsukuba, Japan For the CDF collaboration April-8 2003 APS @ Philadelphia # Lifetime with Semileptonics - Heavy Quark Expansion model predict the lifetimes for different B hadron species - $\tau(B_c) << \tau(\Xi_b^{\ 0}) \sim \tau(\Lambda_b)$ $< \tau(B^0) \sim \tau(B_s) < \tau(B^-)$ $< \tau(\Xi_b^{\ -}) < t(\Omega_b)$ - $\tau(B^+)/\tau(B^0)$ = 1.00 + 0.05 x (f_B/200 MeV)² - $\tau(B_s)/\tau(B^0) = 1.00 \pm 0.01$ - $-\tau(\Lambda_b)/\tau(B^0) \sim 0.9$ It will be a good test for the HQE to measure these values directly To measure B⁰/B⁺ lifetime, - 1. I+D⁰ sample; fit B^{0/+} average lifetime - 2. I+D*- sample; fit B⁰ lifetime - I+D⁰ sample(D*- excluded); fit B+ lifetime - 4. Get B+/B⁰ lifetime ratio Apr-8 2003 APS meeting #### The CDF-II Detector Apr-8 2003 APS meeting # Analysis overview - (1) Reconstruct μ+D⁰ signal - Divide D⁰ and D* candidates - Estimate sample composition - (2) Calculate decay time - (3) Estimate background - Use D⁰ mass sideband - (4) Estimate the bias to the decay time distribution - K factor - SVT impact parameter cut - Resolution smearing - (5) Extract the lifetime - Unbinned likelihood fit # μ+D⁰ sample - Data is from μ+SVT dataset SVT...Silicon Vertex Tracker measures impact parameter at the trigger level - Lepton+SVT trigger - Require 4 GeV lepton + 2 GeV SVT track (=charm daughter track) which have 120 μm < |d₀SVT| < 1 mm - Efficiently collect semileptonic B decay signal - SVT impact parameter cut biases B lifetime distribution #### Signal Reconstruction Reconstruct $\overline{D}{}^0 \rightarrow K^+ \pi^-$ around the μ , then divide candidates into D^0 and D^{*-} sample $$-B^{0/+} \rightarrow \mu^+ \nu \overline{D^0} X, \overline{D^0} \rightarrow K^+ \pi^- (D^{*-} \text{ excluded})$$ $$-B^{0/+} \rightarrow \mu^+ \nu D^{*-} X, D^{*-} \rightarrow \overline{D}{}^0 \pi, \overline{D}{}^0 \rightarrow K^+ \pi^-$$ μ and K have charge correlation $$-Q_1 = Q_{\kappa}$$: Right sign (black points) $$-Q_1!=Q_K$$: Wrong sign (blue histogram) Satoru Uozumi Apr-8 2003 APS meeting ### Missing momentum (K factor) - Real decay time $ct = L_B m_B / p_B$ - B isn't fully reconstructed - We can't measure p_B but p_{ID} $$ct = L_B m_B / p_B$$ $$= L_B m_B / p_{ID} \cdot K$$ $$= ct^* \cdot K$$ ct*... pseudo decay time - Estimate $$K = p_{ID}/p_B$$ from MC - K factor depends on - -Generated p_{TB} distribution - -Sample composition - -Decay model - -Trigger/offline cuts # Bias from the SVT d₀ cut - Decay time distribution - $dN/dt = e^{(-t/\tau)}$ - SVT impact parameter cut - $-120 \, \mu \text{m} \le |d_0^{\text{SVT}}| \le 1 \, \text{mm}$ - Changes the distribution - $dN/dt = e^{(-t/\tau)} x eff(t)$ - Estimate this efficiency curve from MC - SVT bias depends on - Decay kinematics (e.g. $p_T, \Delta \phi$) - SVT tracking efficiency - SVT impact parameter resolution # Lifetime fitting (Unbinned likelihood fit) - Signal Likelihood - $L(t', \sigma t'; \tau) = e^{(-t/\tau)}$ - x eff(t) - \otimes D(K) - \otimes R(t',t; $\sigma_{t'}$) - Likelihood distribution - Physics (exponential) - Apply SVT efficiency - Apply K factor - Apply resolution function # Fitting Results (inclusive I+D⁰) - Fitting result shows statistically significant difference with the world average - It looks there are some systematic effects from unknown sources - For now we will not show any fitted lifetime from semileptonics (not only B^{0/+}, but also B_s , Λ_b) Points: data Blue: signal likelihood Red: background likelihood Black: signal + background Apr-8 2003 APS meeting #### Fitting Results(separating μ+D⁰/D*) - $c\tau(B^0)$: xxx $\pm 17.3 \mu m$ - cτ(B+) : xxx + 13.5 μm - $c\tau(B^+) / c\tau(B^0) : xxx + 0.066$ Apr-8 2003 APS meeting ## Summary - We are measuring B⁰/B⁺ lifetimes using the semileptonic decays in CDF Run II - We have large and clean sample (~8K each for both e,μ+D⁰⁾ in ~ 70 pb⁻¹ of the data - There are some important issues for measuring lifetime - Correct for the missing momentum (K factor) - Correct for the bias from the SVT impact parameter cut - Studies are ongoing for the precise B lifetime measurement